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ABSTRACT

Background: For several years adaptive designs became more and more popular in the pharmaceutical industry and in 
particular much attention was brought on adaptive seamless designs. Those designs combine the phase II dose finding trial 
and the phase III confirmatory trial in a single protocol (with a fixed total sample size). The objective of this paper is to propose 
some utility−based tools to optimize those designs: first in terms of ratio between phase II and phase III sample sizes, and, 
second, in patient allocation to doses at the beginning of phase II.

Methods: Design optimization methods are generally based either on Fisher information matrix (D−optimality) or on the 
variance of some statistics of interest (C−optimality). Instead, we propose to define utility functions associated to sponsors' 
decision related to choice of dose for the phase III and we propose design optimization metrics based on the expected value 
of this utility.

Results and Conclusions: After reviewing and discussing several kinds of utility functions, we focused on two of them, that 
we have assessed through simulations. We concluded that in most of the scenarios simulated, the expected utility was in a 
sense more sensitive to the timing of the interim analysis (ratio between phase II over total sample size) than on the patients 
allocation between the doses. This result points out the fact that it might be necessary to enroll a larger number of patients in 
phase II to allow an accurate identification of the optimal dose.
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   INTRODUCTION
1.1 Methodologies for dose selection in drug development

The choice of the dose for the phase III is a key milestone of the 
drug development [1]. Therefore, the methodology attached to the 
design, and the analysis of the dose−finding study as well as for the 
dose− selection rule is of major importance.

Traditionally, apart from oncology indication, the search of the 
optimal dose resulted from a sequential process: first the set of 
efficacious doses (it could include only one dose or in the worst 
case scenario, none) was identified and second, the highest dose 
considered as ”safe” or ”well tolerated” was selected for the late 
development phases. Also, the first step related to the identification 
of the efficacious doses were driven by multiple−testing procedures: 
the set of efficacious doses was defined as the set of doses that were 
significantly different from placebo in the dose finding study after 
adjustment formultiplicity. Various multiple − testing procedures 
can be considered: Dunnett’s procedure is widely used for the 

quantitative variables; more recent general gatekeeping procedures 
[2] are also used.

A more recent approach that requires the assessment of the dose−
response (for efficacy) relationship is the Multiple Comparison 
Procedure and Modeling (MCP−Mod) [3]. It uses a predefined 
set of candidate models for the dose−response relationship. Once 
the evidence of a drug effect is established at the MCP step using 
multiple contrast tests, a Mod step is used to estimate the dose 
meeting the expectations of the sponsor.

It is now becomingly accepted that finding the right dose should 
be rather considered as an estimation problem than a multiple 
testing problem [4]. This latter traditional approach, as well as the 
more recent MCP−Mod procedures generally consider efficacy and 
safety sequentially: doses associated with statistically significant 
differences versus the control, for the multiple testing approach, 
or doses with desired difference versus control, for the MCP−Mod 
approach, are identified first and then the highest dose amongst 

−
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   MATERIALS AND METHODS
The aim of this section is essentially to define the utility functions 
that attribute utility values to the sponsor’s decisions, and then 
govern the choices: decision to continue the trial after interim 
analyses, choice of dose. These utility functions can also be used 
to give guidance on an operationally seamless design, in terms of: 
timing of the interim analysis, design of the phase II part (stage 1). 
Several utility functions will be proposed and their properties will 
be discussed.

2.1 General notations and main notions

In this subsection, we describe the mathematical formalization of 
a phase II/phase III development program, aiming to define all 
necessary notations and calculations related to the dose−response 
modeling of efficacy, and to the probability of success PoS of phase 
III.

Here is the mathematical formalization of our modeling approach: 

d

(ii) Yd,i represents the random efficacy response of patient i, with 
i=1, ..., nd

phase II study. It is assumed that Yd,i ), σ2) where m(d; θ) 
σ is the residual variability 

(standard deviation of residual error). 

2 3
 denote the phase II and III sample size respectively: 

2 3 tot
. 

(iv) w d is the 
=1).

(v) It is assumed that the expected mean dose−response for efficacy 
), follows an Emax model:

2
1 1 2 3

3

( ; ) ; ( , , )tdm d
d

θθ θ θ θ θ θ
θ

×
+

• θ1 0  is the placebo effect 

• θ2 max is the maximum effect compared with placebo 

• θ3 50 is the dose with half of the maximum effect 

model to estimate the mean dose−response relationship. Note 
that the choice of an Emax model was driven by the fact that it is 
the most frequently used model for efficacy in the literature, see 
[15−18].

2.2 Utility functions: constructions and properties

In order to define and construct our utility functions, we consider 
the following assumptions: 

(i) The total sample size is fixed: Ntot
=N

2
+N

3
  = constant. 

(ii) The relative sample size of the phase II study with respect to the 
total sample size (phase II+phase III) is described with a parameter 

(iii) The N
2 tot) patients are distributed in 4 doses and 1 

placebo. 

(iv) The N3
 (=(1−f) ×N

tot
) patients are distributed in two arms: the 

/2 patients.  

 The relative efficacy is denoted by =efficacy / maximum efficacy, 
therefore we have:  

them considered as “well tolerated” is generally chosen. This is 
the approach we have selected in this paper, in formalizing the 
decision rule with the help of utility functions.

1.2 Designs for dose− finding studies: Fixed and adaptive 
designs studies

The standard dose−finding study is parallel arms study with 4 or 
5 doses and a control group (in general a placebo group) with a 
balanced design. Seamless designs, combining both phase II (dose−
finding) and phase III trials, are becoming increasingly important 
[5−7]. The problem of optimizing the design for the purpose of 
dose selection has already been addressed (see for example [8] 
where the aim is to establish efficient study designs to estimate 
relevant target doses) but the methodology is most often based on 
C−optimality (based on the variance of some statistics of interest) 
or D−optimality (based on Fisher information matrix). Some work 
dedicated to the optimisation of designs based on utility functions 
exist but they are rather sparse: we can mention [9], in which 
the design is optimized by minimizing the expectation of a cost, 
or [10−13], in which the optimisation of stage 2 by optimizing 
patients allocation is addressed. But as of today, one lacks of a 
unified framework based on Decision Theory aimed at assessing 
and comparing several dose−finding strategies and designs. 
Instead of using classical design optimization (D−optimality or 
C−optimality), we propose to define utility functions associated to 
sponsors' decision related to the choice of dose for the phase III 
and we propose design optimization metrics based on the expected 
value of this utility. More specifically, the objective of this paper is 
to propose some utility−based tools to optimize seamless designs: 
first in terms of ratio between phase II and phase III sample sizes, 
and, second, in patient allocation to doses at the beginning of 
phase II.

1.3 Objectives of the paper

The global objective of this paper is to address the problem of 
optimizing the design of a phase II/phase III seamless study, and 
indirectly the dose selection, with the point of view of Decision 
Theory [14] and utility functions. The methodology can be 
formalized as follows:

(i) Use Decision theory and utility functions to rationalize 
and optimize decision−making related to the choice of dose.

II trial. This work is conducted in the context of adaptive seamless 
phase II/phase III trials: the aim is to identify the best timing 
for the interim analysis (ratio between the sample size at interim 
analysis and the total sample size) and the optimal allocation of 
patients within the doses arms at start of the study.

The beginning of  Section 2 is devoted to the description of materials 
and methods, including all the required denotations, as well as 
the mathematical formalization of the efficacy dose−response 
modeling approach. We first proposed and discussed several types 
of utility functions and then we assessed, through simulations, 
their ability to identify an optimal design. Section 3 is dedicated to 
simulation results assessment and interpretations. Finally, Section 
4 summarizes our decision−making framework, addressing the 
proposed method, and discussing the seamless design optimisation 
based on utility functions.

, where  nd

(i) We consider one placebo d

is the number of patients for the dose  in d
d θ

is the expected mean effect of dose  and d

(iii) N  and N
in the context of a seamless design N +N  is a fixed constant, N

 is a vector representative of the phase II design: w
∑proportion of patients allocated to dose arm  (

 (

=+=

θ

The E model will be used also by the sponsor as “working” max

selected dose and the placebo, each one with N3

2.

=0 and four active doses =2, 4, 6, 8. 

~ N(m(  ; 

d

;m d

= E

=E

=ED

, 0 ≤  ≤ 1. 

 (=f × N

f f 

δ

d
w

(ii) Use this same framework to optimize the design of the phase 
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d, f )= N21 1 Ntot adj

d, f )=−γN
tot

− δ− 0.95)2)

d, f )=−γN
tot max

(1 −δ)

d, f )=−γNtot max (1 −δ)2

d, f d) × (1 − δ− 0.95)2)

d, f d) × (1 − δ)

d, f d) × (1 − δ)2

d, f )=−γNtot d − δ− 0.95)21(δ> 0.95))

d, f d) × (1 − δ− 0.95)21(δ> 0.95))

d, f d − d k / max) 2 ) (where d k  is the dose and  
dmax is the highest dose)

d, f d) × (1 − d))k

of toxicity for dose d)

d, f h
obs

k

adj

‘Success’, defined by both simultaneously a statistically significant 
comparison with the control in the phase III trial (efficacy PoS) 
and the absence of safety issues in the same phase III trial): 
PoS

adj
(d)=PoS(d) × (1 − sa(d/d

K
)2).

obs
k component is  defined as follows: the 

number of patients having a critical toxicity is a binomial 

3

proportion of patients having a critical toxicity  in phase  III, 

3 obs

is then the predictive probability of controlling over−toxicity, i.e. 
the predictive probability of observing a toxicity rate 0.15 in phase 
III. Note that 0.15 is an arbitrary choice in this paper, but this 
choice usually depends on the therapeutic area. For instance, a 
threshold of 0.30 (or 0.40) is more common in oncology and may 
vary in other areas.

obs

ɸ(λ λ d), λ=(λ
λ λ λ

outcome, 1 for critical toxicity and 0 if no critical toxicity, and ɸ 
is the Cumulative Distribution Function (CDF) of the standard 
normal distribution.

higher and the penalty for safety.

max 50
50

max

/ ( ) / ( )E d ED d d ED d
E

= =

Therefore  varies between 0, for a null dose (placebo), and 1 for a 
very large (or “infinite”) dose.  

 In this subsection, we define utility functions that assign numerical 
values to the sponsor decisions at the end of the phase II part of 
the study. A typical example is the following utility function, that 
assign values to a combination of two decisions: 

• Go/NoGo decision for entering phase III:

→ cost of the phase II trial=−γ N2 ; 

success or not of the phase III trial: if success of the phase III trial 
→ gain=Reward−total cost=R −γNtot 

within the doses tested in the phase II study. 

 The utility value is in fact random after the phase II stage, as the 
final reward depends on the success, or not, of the phase III part. 
Therefore, from the sponsor’s point of view, the expectation of 
final utility value is the key quantity to assess; it depends on the 
expectation of reward after the phase III and, as a consequence, 
depends on the PoS of the phase III part. Therefore, from the 
sponsor’s point of view, the expectation of final utility value is the 
key quantity to assess; it depends on the expectation of reward after 
the phase III and, as a consequence, depends on the PoS of the 
phase III part. For further computational details regarding the PoS, 
see Appendix A.1. 

following, we have defined ‘Success’ in phase III by simultaneously 
a statistically significant comparison with the control in the phase 
III trial and the absence of safety issues in the same phase III trial: 
the probability of absence of safety issues is modeled as a function 
of dose, d , 1 −  (d/dk )2, where dk is the highest dose in the 

safety concern with the highest dose of the design. In this case, 
the PoS is the product of the PoS for efficacy by the probability of 
absence of safety issue. This utility function has been proposed in 
[19]. Such a utility function has appealing properties, in particular 
the easy interpretation of the parameters. But the problem with 
such utility functions is that some of the parameters (in particular, 

sa, the 
safety parameter, which is fixed also) are not known with enough 
confidence or precision at the beginning of the drug clinical 
development. 

 More generally, a proper utility function should have the following 
properties: 

(i) It must depend on success of the phase III study (higher utility 
in case of success) 

(ii) It must not be a non− monotonic  concave  function  of the 
dose with a unique maximum value (increasing then decreasing): 
such a shape reflects the bi−dimensional aspect of the utility 
function: one increasing with the dose (efficacy component) the 
other one decreasing with the dose (safety component) 

Examples of utility functions verifying those conditions are shown 
below, and some are plotted, assuming success, in Figure 1:

Figure 1: Overview of some utility functions.

It should be noted that for this utility function, named U0 in the 

design and  is a parameter corresponding to the probability of 
sa×

sa

R , the financial reward if the program is successful, and ( ) ≤ 0.15) dtox    =#patients with critical toxicity/(

), where π( )  is  the d ddistribution of parameters N

N

/2 and π(

1 + 2 × 
2 =b is the dose effect, 

Parameters and  reflect the respective contributions of efficacy 

2

the following Probit model: π( )=dd
( ) ≤ 0.15) safety components, we used d

( ) ≤ 0.15)d

) ( ) ≤ 0.15)d d

d

d

d

d

d

( ))d

=a is the intercept parameter, 1

 – if NoGo’ ’

– if Go’ decision then the value depends on a random event, ’

• if Go’ decision then the sponsor must choose the adequate dose ’

1. U0( −γ (NoGo )+ (Go )(−γ +R  × PoS

2. U1( +PoS ( ) × (R   c(

3. U2( +PoS ( ) × R

4. U3( +PoS ( ) × R

5. (  )=PoS (  c(U4

6. U5(  )=PoS (  c ×

7. U6(  )=PoS (  c ×

8. U ( +PoS( ) × (R  c(7

8(9. U )=PoS (  c(

10. U9( )=PoS (  c (

11. U10( )=PoS ( PoT (  (where PoT (

12. U11(  )=PoS (  × P(tox

The PoS  component denotes the adjusted efficacy PoS  (i.e. 

tox

/2); so P( tox

The P(

For both PoT (d ) and P(tox
)=P( =1|w

h k
safety to the utility function; for instance, the higher the , the k

δ

)  (1 

) is  the  probability                                               

probability of toxicity for dose d ; the quantity toxobsis the observed 

1  ,  

 is the global toxicity profile for one patient, captured by a binary w

δ

obs

× +

)t,  where 

+
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and safety components but have the desired concavity property. 

effect of the dose (so that it does not depend on the dose unit), 
the effect is expressed as a function of  δ: the main problem with 
such a definition is that, for the sponsor’s point of view, the utility 
function also depends on the estimation of the efficacy dose−

depend on the efficacy dose−response model.  The utility functions 

component.

2.3 Seamless design and utility function

The aim of this subsection is to give guidance on an operationally 
seamless design, in terms of: timing of the interim analysis, design 
of the phase II part (stage 1). The main underlying hypothesis 
is that the sponsor takes its decisions (decision to continue the 
trial after interim analyses, choice of dose) in maximizing a utility 
function that assigns a value to each decision. To do that, some 
of the utility functions defined in the previous section will be 
discussed according to their relative simulation results.

2.3.1 Introduction and notations

Before study starts: sponsor’s general strategy is to maximize (in 

A frequentist approach was used to compute the parameters 
estimates of dose−response model: sponsor’s decisions are driven 
by maximum likelihood estimations of the model parameters. 
Decision  rule  of  the  sponsor  is  only  based  on  point  estimate  
of  model  parameter  . We compared the properties of the 
decision rules through clinical trial simulations; corresponding 

in simulating individual patients but in simulating directly the 
maximum likelihood parameter estimates by sampling them with 
a Normal distribution N(θ; −1 ), where I is the Fisher information 
matrix.

2.3.2 Optimal patient allocation

All utility functions presented in Section 2.2 were assessed through 
several simulation scenarios, but for sake of simplicity, only 
some particular functions of interest are presented in this paper. 
Regarding the optimisation of patient allocation to doses as well 
as the global patient allocation between phase II and phase III, we 

For the purpose of explicit safety modeling (via a dose−response 

that efficacy and toxicity are not perfectly treated at the same level. 
d), involves both the effect 

in comparison, the toxicity component, (1 − , only involves 
the toxicity level of the dose d without involving the sample size 
of the phase III study at all. This asymmetry is troublesome when 
it comes to optimizing the allocation of patients between phase II 

depend on the sample size of the phase III study. This choice is 
intended to reflect real life conditions where Go/NoGo decisions 
and dose selection at the end of phase II always relate to the sample 

2.4 Sponsor’s strategy: Optimal dose and decision rules
Our utility − based decision framework can be described in the 
context of a Markov Decision Process [20]. In particular, the most
comprehensive decision framework in our context, the corresponding

According to this graph:
(i) At start of the study the sponsor can act on the design of the 

sample size by the total sample size) and the allocation of the phase 

is proportional to sample size in phase II: γN2.

(ii) When the phase II part is completed, the sponsor analyzes the 
data and takes two decisions: decides to go the phase III or not and, 
in case of positive answer, chooses the dose for the phase III.

(iii) When the phase III is completed: if it is successful then there 
−γN

2
−γN

3
=R −γN

tot
; if it 

not successful then there is total cost, and the utility is negative 
→ 

 
U= Ntot

In an uncertain environment like this one, the sponsor’s strategy 

to the Bellman Dynamic Programming principle, this optimisation 
should be performed backwards:

→ * ( f, 
w)=max

d

* d Ntot

adjusted PoS, which plays a key role in the calculations

adj * 
*(f, w)

⟺ *) ≥ 0.30 & maxd tot , otherwise 
the sponsor should choose ‘NoGo’

*

slightly simplified: because for those utilities there is no reference 
to economics costs, we have proposed to base the decision to go to 
phase III or not on a minimal value of the PoS only, that we have 
also set to 0.30: the sponsor decides to go in to phase III if the 

In the following we detail the methodology related to the points 
1. and 3.

2.4.1 The computation of PoS

The efficacy PoS computed by the sponsor, for dose selection, uses 
the point estimate . 

In the method shown in Appendix A.1, the sponsor uses the raw 
value of the estimate of the model parameters to estimate the 
PoS as if it was the true parameter value. In a more conservative 
approach, the sponsor might want to consider the uncertainty in 
the parameter value: in that case a hierarchical approach can be 
used.

2 totphase II design, w

θ

R is a reward, , and the final gain is R U=

). According U

) U U

  ratio, f

U

U

The utility functions 1 to 9 do not explicitly refer to the efficacy U U

In the utility functions 1 to 8, in order to normalize the U U

response model; on the contrary, the  utility function does not 9U

10 and 11 explicitly identify both an efficacy and a safety U U

using respectively the utility functions 5 and 9 only (additional U U
results for 2 are given in Appendix A.2).U

function), utility functions of the form 10 or 11 are the most U U
appropriate. But, what is striking about the utility function 10 is U

size of the dose  and the sample size of the phase III study whereas d

and phase III, and for this reason, 11 was proposed. A specific U
characteristic of 11 is that both its efficacy and safety components U

to the utility 0, can be described by the following graph.U

U (

For the utility functions 1,..., 11 the decision process has been 

U

U U

(
(d

 (R) 

 associated to the best dose d

d

trial: the timing of the interim analysis (the ratio,  of the phase II ,f

II patients to the dose arms (vector ). This action has a cost which w

, and /N N

(the set of actions) is to optimize the mean utility E(

decisions  (Go/NoGo,  choice of dose) maximize 
E

E ; this quantity E

E

E

3. The optimal design maximizes E f(

2. The sponsor chooses ‘Go ’ if PoS

Indeed, the efficacy component, (PoS

estimated  associated to the best dose is ≥ 0.30.PoS

 of ^ θθ

Iθ

) the expected utility. 

size the sponsor can afford for phase III. This can be viewed as a 
pragmatic choice. Results obtained in using U10 and U11 are not 
given in this paper.

PoT(d))k

d
only the reward, ); at this stage 

(f, w)=max −

− γ

γ

=max

PoSadj (

(R)  depends on the 

γN

, w)

Eresults are shown in Section 3. The simulations were not conducted 

r

compared in this paper, through simulations, results obtained in 

u

1. Given that the phase II trial has been performed, the optimal 

d d

 (R ) >

U ) >is ≥ 0.30 & 0

d

it depends on the s  ccess o  not of the phase III 
R, is random:  

trial; therefore
dd
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The hierarchical model approach is as follows:

• Given , ∆ ̅ (d N(m(d ; θ) ,2SE 2) since m(0;θ)=0 
(because E0 =0 in our chosen scenarios) and approximately, θ ~ N(θ, 

−1); then by linearization (delta−method):

m(d ; θ) ≃ m (d; θ) m(d; θ t.(θ−θ̂)

⟹  (d; θ)~N(m(d; θ), t −1 m(d; θ))

⟹  ∆ d) N(m(d; θ),2SE2+ m(d; θ)t −1 m(d; θ))
2

2 1

( ; ) 1.96 2( )
2 ( ; ) ( ; )t

m d SEPoS d
SE m d I m dθ

θ

θ θ−

 − × =
 +∇ ∇ 



Accounting for uncertainty induces decrease of the estimated PoS, 
consequently, the sponsor is encouraged to increase the dose to 
compensate.

With this approach, issues arise when   is singular. A possible 
solution would be as follows.

When computing 
1

1 ( )simN
rr

sim

U
N

θ
=∑



   keep only those for which
 

 is 

nonsingular:

* drawback: increases computation time

*one needs to check, using the PoS that does not account for 
uncertainty, that :

1

1 ( )simN
rr

sim

U
N

θ
=∑



 does not change too much when only replicates 

with nonsingular  are kept.

We essentially considered the case in which the sponsor only uses 
the estimate of the parameter to compute the PoS.

integration: − × f Ntot ) × (1 −Go(θ −𝛾 × Ntot+R × 
PoSadj ( θ

d(θ))) × Go(θ))) p(θ)dθ, where p( ) is the density of a 
Gaussian distribution centered at the true value of  the parameters 
and with  covariance  matrix equal to the inverse  of the Fisher 

In fact, E(U(d*) θ
⇒E 

 
(phaseII ) E(U(d*)|phase II)=E (θ)U(θ θ~N (θ , −1 ).

Then E w,f  ( phase II ) 

where the θr  are sampled  from N (θ, −1 . 

The strategy is as follows:

):

•compute |phase II) for each dose d

* =arg maxd
 E(U(d, f )|phase II)

worth going to phase III if

(ii) Before phase II:
The sponsor’s strategy before the phase II consists in optimizing the 

size divided by the total sample size) as well as the allocation of 

this can be written as: ( )
,( *, *) arg max phaseII

w f=  
(U(d*)|phase II)

. 
In practice: 

• 
( )

,
phaseII

w f

explained above

•The optimisation was conducted using Nelder − Mead algorithm 

(after logistic transforms to ensure that  with 
the R ‘optim’ function.

•This optimisation could be conducted either separately (optimize 

2.5 Simulation protocol and scenarios

The maximum effect size simulated in the example is 0.4. We 

tot
=2000. The 

residual variability is assumed to be known and set to the value 
of 1 in the simulations. This value has been chosen in order to 
have, for one of our most important scenarios, named ”Sigmoid” 
(defined below), an effect size (the ratio of the expected difference 
versus placebo divided by the common standard deviation) of 0.4 
for the highest dose (d=8) of our design. This effect size is in the 
range/order of magnitude of effect size generally targeted in drug 
development (it is admitted that the standard effect size of clinical 
importance observed from most clinical trials is within the range 
of 0.25 and 0.5, see [21]). According to simulation results, =1 
seemed to be a reasonable choice in terms of estimation quality and 

γ
the maximum probability of phase III failing due to safety is sa, 

sa=0.01, 0.05, 0.10, 0.20 and 0.50.

on it: it was calibrated so that the highest tested dose is located 
after the peak of the utility curve, this exemplifies the model’s 
behaviour, and shows that it does not necessarily select the highest 
dose all the time.

sim
=10000 θ 

replicates are generated. Tables summarizing simulation results of 
the 10000 simulated studies are presented in Section 3, each result 
is an average value calculated over all phase II studies.

We consider in this paper two main efficacy scenarios assumed to 
be the true ones reflecting the real dose response:

     (i) Sigmoid scenario: This scenario is monotonic, that is, the 
mean response is strictly increasing as a function of the dose; for 

max
, 

ED50

    (ii) Plateau scenario: this scenario begins with an almost linear 
growth, followed by an inflection, and then stabilizes at the end, 
which means that the last two doses have the same efficacy; for this 

max 50
, 

E
0
)=(0.14, 0.9, 0).

RESULTS
The aim of this section is the following:

(i) Illustrate influence of safety (as the dose grows) on the PoS of the 

θ

^ ^

^ ^
^
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=cost per patient=1. In 0, the function for safety assumes that 

U

U

several values of  is assessed, sa

The ‘c’ coefficient is set to 0.8 in all utility functions depending 
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(ii) Illustrate how utilities U5 and U9 can be used to optimize the 
seamless phase II/phase III design study

In the following, the aim is to graphically examine the impact of 
safety on the PoS. Figure 2 shows the PoS by dose for various values 
of the safety parameter and for 600 patients in phase III.

Concerning the computation of mean utility, two methods of 
integration were used:

• One based on a quadrature method for multidimensional 
integrals (cubature package)

• The other one based on successive calls of the R ”integrate” 
function

The first method seems to be the fastest. A possible theme 
or research for further development could be to use Laplace 
approximation method to compute the integrals when optimizing.

In the following, we plotted E(U) graphs as a function of N2, for 
several scenarios (where scenarios refer here to Sigmoid efficacy 
profile and several values of ‘sa’). These graphs are represented for 
a balanced design.

In Figure 3: 

• Utility increases when safety is better.

• With this dose −response function: the phase II needs to be 
larger than phase III.

• The worse the safety, the larger needs to be the phase III (because 
the sponsor selects a lower dose).

CONCLUSION

From these analyses we noticed that, at least for balanced design, 
the optimal sample size of the phase II part of the seamless design 
can be quite large.

In the following, we will tackle the problem of the optimisation 
of the design (optimal repartition of the patients between 
treatment arms) of the phase II part, in addition to the problem of 
optimisation of its total sample size. For this purpose, as we noticed 

integration routines were very long, we will, for these next parts, 
rather use simulations.

utility functions

IIt is recalled that U5 and U9 are defined as follows:

U5(d, f )=PoS(d) × (1 − c ×𝛿)

U9(d, f )=PoS(d) × (1 – c × (dk /dmax )
2)

In the following, a graph highlighting the theoretical curves related 
to the Sigmoid scenario is drawn for each utility function, where 
the blue curve is the PoS, the dotted curve is the penalty and the 
black curve is the utility, i.e. the product of PoS × penalty, and 
a table summarizing all the simulation results is given. This table 

expected utility of the chosen dose for the 10000 simulated phase 
NoGo’ decisions (utility is set to 0 when 

NoGo’ decision).

Optimisations of patient allocation to doses and global allocation 
ratio between phase II and phase III are conducted separately (for 

w is fixed).

Figure 4 is a plot containing the three theoretical curves related to 

Results related to the balanced design (i.e. patients are equally 
allocated to doses), are given in Table 1.

Figure 2: PoS by dose for various values of the safety parameter.

Figure 3:  Utility as a function of phase II sample size and safety sa.

Figure 4:

size (with respect to total sample size) on the expected utility E(U0)

3.1 Results for 0

3.2 Optimisation of the seamless design based on U5 and U9 

U

that the computation time of the expectations E(U) with numerical 

contains the following: w is the design (patients allocation per 
dose), f is the parameter representing the distribution between 
phase II and phase III, Go’ is the probability of going to phase III ’
with the chosen dose, doses’ represents probabilities of choosing ’

POSs mean among the Go’ with the chosen dose and E(U) is the ’
d=2, d=4, d=6 and d=8 respectively among the Go’, POS(go) is the ’

II studies among Go’ and ’’
it is a ’

U f is fixed, and for U5

U5.

3.2.1 Results for U5

 Theoretical curves for U5 , Sigmoid scenario.

, w is optimized while 9, f is optimized while 
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Table 1:

Sigmoid and Plateau scenarios

Sigmoid Plateau

Go=63% Go=94%

doses=0.47, 0.21,0.19, 0.14 doses=0.66, 0.21,0.04,0.09

POS(Go)=45% POS(Go)=90%

E(U)=0.16 E(U)= 0.40

By comparing results to the theoretical utility graph, we can see that 
d

The optimal design results (w*) for both Sigmoid and Plateau 

Table 2:

Sigmoid Plateau

Go=63% Go=94%

doses=0.47, 0.21,0.19, 0.14 doses=0.66, 0.21,0.04,0.09

POS(Go)=45% POS(Go)=90%

E(U)=0.16 E(U)=0.40

The balanced design is almost the optimal design. In addition, 
there is no real gain brought by the optimisation compared to the 

POSs mean and the expectations of utility are almost the same (for 
the Plateau scenario for example, design optimisation decreases the 
average utility by 0.01% compared to the balanced design).

Moreover, we can see that recommended doses do not seem to be 
consistent with Sigmoid and Plateau scenarios: d=2 is too much 
recommended, whereas the best two doses d=4 and d=6 according 
to the theoretical utility. Note that for the Plateau scenario, the 
optimal design performs slightly better in selecting less often the 
one of the first two doses, in addition, design optimisation does 
not increase the average utility compared to the balanced design; 
in such a favourable scenario Plateau there is little/less room for 
improvement anyway compared to the Sigmoid scenario. There 
was no noticed gain either for the Sigmoid scenario: design 
optimisation does not increase the average utility compared to 
the balanced design, it remains almost the same for both designs 
(optimal and balanced designs). Bad dose choices are due to the fact 
that phase II sample size is too small (500 patients) for this sigmoid 
model which leads to often bad estimations and consequently, bad 
decisions.

One can try to show that if phase II was larger, the decisions would 
be better and the global expectation of U5 would be closer to the 
theoretical curve previously shown. To do so, we investigated two 
approaches described in the following.

cannot compare ourselves to this curve above because it is based 
on theoretical PoS for a phase III of 1500 patients. Nevertheless, 

will decrease, but the utility will eventually decrease also by lack of 
patients in phase III (Table 3).

Table 3: Simulation results for U5 with the balanced design (patients 

are equally allocated to doses), Sigmoid scenario, by increasing f.

Sigmoid

Go=63%

doses= 0.47, 0.21,0.19, 0.14

POS(Go)=45%

E(U)=0.16

Sigmoid

Go=68%

doses= 0.27, 0.23,0.31, 0.19

POS(Go)=57%

E(U)=0.22

Sigmoid

Go=70%

doses= 0.12, 0.11,0.37, 0.41

POS(Go)=66%

E(U)=0.22

Sigmoid

Go=44%

doses=0.01, 0.00,0.03, 0.96

POS(Go)=33%

E(U)=0.06

Based on Table 3, we can clearly see that by increasing the sample 

choose the highest dose: we compensate the loss of the number of 
patients in phase III by the selection of the most effective dose).

Second approach

We examined obtained results when we increase the phase II, by 

2=2000 patients, and by fixing phase III sample size, 

3
=1500 patients. 

2
=2000 patients, we obtain:

• Prob(choosing d=2)=17%

• Prob(choosing d=4)=36%

• Prob(choosing d=6)=41%

• Prob(choosing d=8)=9%

This time better decisions are made: d=2 is rarely chosen (17% of 
cases), but d=4 or d=6 are very often chose (one or the other is 
chosen in 77% of the cases, optimal dose being d=6 according to 
theory).

It is very important to note that the ”theoretical” utility depends 
on the size of the phase III, and therefore, the optimal dose 
depends on the size of the phase III: optimal dose increases when 

2 3 decreases 
which induces that higher doses are necessary to have a sufficiently 
high PoS, see Figure 5.

=2 is recommended with a very high probability: d=2 is chosen in 
47% of cases if Go’, in Sigmoid scenario.’

scenarios, with f=0.25, are given in Table 2.

balanced design, the probabilities of Go’, the choice of doses, the ’

First approach, increase the f

Indeed, it is possible to increase the phase II by increasing the f, 
but by increasing f, we decrease phase III: so if we increase the f, we 

we can verify that if f increases, the probability of choosing d=2 

size of phase II, we reduce the probability of choosing d=2 (but we 
also make bad choices because the more f increases, the more we 

Ntot  is constant, when N  increases, N

−for U5, 

w=(0.2,0.2,0.2,0.2,0.2), f=0.25 w=(0.2,0.2,0.2,0.2,0.2), f=0.25

w =(0.21,0.21,0.21,0.19,0.18), 
=0.25

w=(0.22,0.18,0.19,0.21,0.20), 
f =0.25

w=(0.2,0.2,0.2,0.2,0.2), f=0.25

w=(0.2,0.2,0.2,0.2,0.2), f=0.50

w=(0.2,0.2,0.2,0.2,0.2), f=0.75

w=(0.2,0.2,0.2,0.2,0.2), f=0.95

 Balanced design patients are equally allocated to doses−

 Optimal design − optimizing the dose allocation ratio  for U5, −

Sigmoid and Plateau scenarios, with  = 0.25.f

f

considering N
N

With N

f increases: since 
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Modification of optimisation strategy

In the following subsection, we have decided to work on a global 
patient allocation between phase II and phase III optimization 
only, with a balanced design, for the following utility function:

U9(d, f )=PoS(d) × (1 – c × max
)2).

In fact, according to all previous results, there was no difference 
between the optimal and balanced designs when it comes to 
patients allocation to doses, and no real gain was noticed regarding 

we will seek to optimize the patients between phase II and phase 
III, that is to say, we will proceed with an overall optimisation 
of the patients allocation between phase II and phase III (while 

2 3
=2000). 

In the following, we also included a second constraint in the 
decision rule: the PoS must be > 0.30 and the effect difference 
between placebo and the recommended dose must be > 0.04 (to 
eliminate low doses). In fact, the threshold here (0.04) was chosen 

max 0 50 ), 
which is 0.055. In general, these thresholds are preclinically 
defined, but here, for our simulations, we considered a threshold 
equal to 0.04.

The theoretical utility, PoS and penalty curves for U9 are shown in 
Figure 6.

The comparisons of the Sigmoid and Plateau scenarios, between 
the non−
III, we compared different fixed values of f ), and the optimal design 
(optimizing the patients allocation between phase II and phase III) 
are given in Table 4.

fixed and the objective is to optimize f only.
Based on Table 4, parameters are well estimated and correct 
decisions and dose choices are made.
Table 4: 
design consists here in optimizing the global patient allocation 
between phase II and phase III, Sigmoid and Plateau scenarios.

 

Go=51% Go=66%

 

doses=0.44, 0.32,0.17, 0.07 doses=0.74, 0.16,0.07, 0.03

 

POS(Go)=83% POS(Go)=99%

 

E(U)=0.31 E(U)=0.56

 

Go= 74% Go= 86%

 

doses= 0.32, 0.41,0.21, 0.06 doses= 0.69, 0.21,0.08, 0.03

 

POS(Go)=83% POS(Go)=97%

 

E(U)=0.44 E(U)=0.72

 

Go=86% Go=94%

 

doses=0.17, 0.52,0.25, 0.05 doses=0.61, 0.29,0.08, 0.02

 

POS(Go)=77% POS(Go)=90%

 

E(U)=0.46 E(U)=0.71

Figure 6:

Figure 5:  Theoretical utilities as a function of the dose and f.

’ proportion in phase III. the PoS, the global utility and the Go’
So now, we will only work with a balanced w design, but this time 

maintaining a fixed total number as before, N +N

on the basis of the theoretical effect of d=2 (i.e. the lowest dose) 
obtained with the three-parameter E  model (E , E  and ED

3.2.2 Results for U9

optimal design (i.e. fixed f  between phase II and phase 

We recall that we are working here with a balanced design, i.e. w is 

Non   Optimal−

w=(0.2,0.2,0.2,0.2,0.2) w =(0.2,0.2,0.2,0.2,0.2)

w =(0.2,0.2,0.2,0.2,0.2) w =(0.2,0.2,0.2,0.2,0.2)

w =(0.2,0.2,0.2,0.2,0.2) w=(0.2,0.2,0.2,0.2,0.2)

 Theoretical curves for U9 , Sigmoid scenario.

Optimal

=(0.2,0.2,0.2,0.2,0.2) w
f=0.40

=(0.2,0.2,0.2,0.2,0.2) w

=0.37f

Go=83% Go=92%

doses=0.23, 0.49,0.23, 0.05 doses=0.65, 0.25,0.08, 0.02

POS(Go)=80% POS(Go)=95%

E(U)=0.47 E(U)=0.74

On the other hand, according to the optimal design above, it is 

recommended to increase the number of patients in phase II to 
make a better choice, which amounts to the idea that we tried to 
prove previously with U5 , by increasing the sample size of phase II.

Additional results regarding  are given in Appendix A.3: utility 

expectations (after the sponsor’s choice: Go and dose choice) are 
U9

plotted as a function of , for both Sigmoid and Plateau scenarios.f
3.3 Concluding remarks

We have proposed a general decision− making framework, 
suitable for comparing and optimizing seamless phase II/ phase 
III designs, based on utility functions. We have reviewed and 
discussed various forms of utility functions that either appeared 
reasonable for us or were previously mentioned in the literature. 

(dk /d

Optimal versus non  optimal design for U9, where optimal −

=0.10f

=0.25f

=0.50f

max
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Because we think that utility functions defined by economic or 
financial considerations (such as the cost of phase III, expected 
financial reward in case of successful launch of the drug) are 
difficult to specify with enough confidence or precision at the 
beginning of the drug clinical development, we preferred to focus 
on utility functions only defined by efficacy and safety (explicitly or 
implicitly) considerations. We then performed a simulation study 
with those utility functions that seemed to be the most appropriate 
to us, in particular U5 and U9  utility functions. Unfortunately, 
the obtained results were not fully satisfactory, as no real gain was 
noticed when optimizing patient’s allocation to doses: the optimal 
designs identified were, in most cases, very close to the standard 
balanced design. So, optimizing the dose allocation ratio in stage 
2 of the dose−finding study offered very little improvement in 
comparison with the significantly increased operational complexity 
and consequently, this optimisation part becomes debatable, and 
needs to be properly improved/refined.

      DISCUSSION AND CONCLUSION
In the context of seamless phase II/phase III study design, we 
have defined a Statistical Decision framework in which the 
sponsor needs to take sequential decisions with the objective 
of maximizing the expected future utility. For this matter, we 
proposed and discussed various forms of utility functions: for all of 
them, the calculation of their expectations involved the calculation 
of the Probability of Success in phase III. In terms of statistical 
methodology, we considered a frequentist approach: the sponsor 
analyses the data of the interimediate analysis (the phase II part of 
the seamless design) using a parametric model of the Emax type via 
maximum likelihood estimation but we considered the possibility 
that the sponsor takes into account the uncertainty regarding his 
estimation of the dose− response function to take these decisions. 
We expected this framework to enable comparisons of different 
seamless designs, a design being defined by the ratio between 
the sample size at the interim analysis and the total sample size 
and also by the distribution of patients among the dose groups 
at the beginning of phase II. For this purpose, we performed 
trial simulations with the objective of identifying the optimal 
seamless designs, for some of the most relevant utility functions 

designs identified were, in most cases, very close to the standard 
balanced design. But this work has also highlighted the crucial 
importance of the size of phase II with, for some scenarios, an 
optimal allocation allocating more patients in phase II than in 

is not realistic in practice. Therefore, an interesting perspective to 
work on would be to focus on an even more frequent situation 
of dose selection in the context of a phase II dose−finding study 
with a fixed sample size and a balanced design. For this purpose, 
one could propose a slightly simpler statistical decision framework 
compared with the previously mentioned one: utility values would 
be assigned to the doses itselves, and then indirectly assigned to 
the decisions at the end of the phase II study: and being equal to 
the utility value of the selected dose for phase III or a null value 
if it is decided not to pursue the drug development after phase II. 
Now the sponsor’s problem would be to find the best dose, that 
is to say, the one having the highest utility. For conducting the 
analysis and identifying the optimal dose, we advocate the use of 
a Bayesian method, instead of a frequentist maximum likelihood 
approach: it has the advantage of providing a richer set of dose 
selection rules and, by definition of the Bayesian approach, allows 
the sponsor to use external information already available. All these 

perspectives correspond to ongoing work developed by the authors 
of this paper.
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APPENDIX
A.1. The computation of the probability of success

The PoS that we consider for efficacy in our utility functions is 
defined as follows.

Suppose that ∆̅(d)= ̅ 0  is the difference in observed mean effects 

A successful phase III trial means that ∆ ̅ (d) ≥ z1−α SE 2

 

(assuming without loss of generality that positive values favor the 

test drug), where SE 2
=𝜎2/(N3 /2), and 

1

−α  is the 1 – α  quantile 

of  the standard Normal distribution. The expectation of ∆ ̅ (d)  is 

equal to m(d; θ ) − m(0; θ ) ; this difference m(d; θ ) − m(0; θ )  does not 
depend on E0

 parameter.
Our null hypothesis H0 assumes that θ ) − m(0; θ )=0. Our 

statistic of interest is defined as:  

2

( )

2

d
Z

SE
∆

=

Under H0 , Z follows a standard Normal distribution. A unilateral 

Z  level of 0.025 is considered in our calculations: if

 

Z  > 1.96, H
 is rejected in favor of θ ) > m(0; θ )

Assuming a particular alternative hypothesis θ ) −  m(0; θ ) 
> 0 , the true PoS can then be written as:

) 2

2

( ; ) (0; ) 1.96 2
H H

m d m SEθ θ − − ×

In the following results, optimisations of patient allocation to 
doses and global allocation ratio between phase II and phase III are 

phase III (see results for U2  in Appendix A.2 for instance), which 

m( d ; 

= ≥ = ≥

A.2. Results for U2

discussed, but this exercise was not fully successful: the optimal 

PoS d P Z P d( ) ( 1.96) ( ) 1.96 2∆ ×( SE 2 =
 
 

SE2

conducted simultaneously ( w and f  are optimized at the same time).

1

Non   optimal−
Sigmoid Plateau

w w=(0.2,0.2,0.2,0.2,0.2), f=0.25 =(0.2,0.2,0.2,0.2,0.2), f =0.25

Go=88% Go=95%

doses=0.29, 0.68,0.02, 0.00 doses=1.00, 0.00,0.00,0.00

POS(Go)=75% POS(Go)=100%

E(U)=4370.71 E(U)=3761.01

Optimal

Sigmoid Plateau

=(0.15,0.04,0.30,0.37,0.14),w w=(0.08,0.15,0.33,0.01,0.43), 
 f=0.65  f=0.49

Go=97% Go=99%

doses=0.04 0.94 0.02, 0.00 doses=1.00, 0.00,0.0,0.00

POS(Go)=95% POS(Go)=100%

E(U)=6502.97 E(U)=3972.67

Table 5:
consists here in optimizing the patient allocation to doses and the global 
patient allocation between phase II and phase III simultaneously, Sigmoid 
and Plateau scenarios.

 Optimal versus non-optimal design for U2, where optimal design 

Table 5 is a typical example highlighting the crucial importance of 

4

between dose d and the placebo in phase III.

× 2

z1

0

H1 : m(d; 

ɸ

Y −̅

H1 : m(d; 

d Y
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phase II sample size, where the optimal design is allocating more 
patients in phase II than in phase III, which is not quite realistic 
in real life.

 

 

Below is the graph of utility expectations (after the sponsor’s choice: 
Go and dose choice) as a function of f , for the Sigmoid scenario:

Below is the graph of utility expectations (after the sponsor’s choice: 
Go and dose choice) as a function of f , for the Plateau scenario:
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A.3. Additional results for U9

Figure 7:  Utility expectations as a function of f, Sigmoid scenario.

Figure 8: Utility expectations as a function of , Plateau scenario.f
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